P Tetrahedron Letters, Vol. 37, No. 45, pp. 8133-8136, 1996
ergamon Copyright © 1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

PII: S0040-4039(96)01891-6 0040-4039/96 $15.00 + 0.00

An Unusual Tandem Cyclization-Stevens Rearrangement Mediated by Ph3P/DEAD or
Bu3P/ADDP
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Abstract:  Alcohols 1 and 10c when treated with Ph3P/DEAD or Bu3P/ADDPt yield products resulting from
intramolecular cyclization to form five- and six-membered, cyclic quaternary ammonium salts (respectively) which
undergo a Stevens rearrangement in the same pot. Copyright © 1996 Elsevier Science Ltd

Since its discovery almost 20 ycars ago the Mitsunobu reaction has played an important part in
synthetic chemistry.2 A number of mechanistic studies have appeared in the literature3 suggesting that the
efficiency of this multi-step process is sometimes lowered by competing side reactions such as elimination or
nucleophilic attack at the wrong position (ie. SN2' vs SN2) or by the wrong nucleophile.4 Additionally, Ph3P
or Ph3P*DEAD (betaine) can react with certain nucleophiles independently of the main reaction course.>
Therefore, we are currently examining the Mitsunobu reaction in an attempt to increase the efficiency of the
process. As part of this effort this letter reports an unusual side reaction observed when a Mitsunobu reaction
was attempted on 1.6

1.0 eq. maleimide
1.0 eq. Ph,P, 1.0 eq. DEAD
COxBu 0.5 eq. neopentyl alcohol C O,tBu

-78 °C-RT, 24 h

eq. 1
Ho MOy e \N/\/\/N\/COZ'B“

1 O 2 (not observed)
ﬁ O2Bu
< :NAcoleu CN 0gBu
4 5

When compound 1 was subjected to our modified-Mitsunobu reaction conditions” we were unable to
detect any of the desired product 2 (eq. 1). Our curiosity was aroused by the fact that the starting material had
been completely consumed but none of the typical by-products (vide supra) were observed. Instead, the
reaction produced pyrrolidines 4 and 5, in low yield (13% and 16% respectively).

A proposed mechanism leading 10 both products is shown in the scheme below. The intermediate
alkoxyphosphonium salt (6) undergoes a rapid cyclization reaction to torm a 5- membered ring8 (7) Although
the imino nitrogen is a weak nuclcophi1e9 due to steric hindrance and the presence of two electron
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withdrawing substituents the driving force for this reaction is the formation of a five membered ring.10 This
is followed by deprotonation with the mono-anion of H*DEAD (cf. X- in the scheme) perhaps, acting as the
base. This sets the stage for a Stevens rearrangement! ! 1o give 5. The same mechanism delivers 4 via
separation and hydrogen abstraction of the putative radical pair 9 before the rearrangement can be completed.

C OztBu
PO /\QNVC 0,1Bu  X- =(Et02CNHNCOZ£E1)
3

x 6
o
C O,tBu
COtBU o Fo (9-C 028U coue
N*C 02tBu ~—— < N"’\C 0,1Bu "—'__..< 7 (9°CO,tBu G
x v 5
7 XH g 9

< :NAC O,1Bu
4

It was found that Ph3P/DEAD, 12 without maleimide or neopentyl alcohol present, was able to deliver
5 in moderate yield (cf. entries 1-4 in the table).13 Compound 4 was not observed when maleimide was
absent. The yield was progressively increased as the amount of reagent was increased but leveled off at 57%
using 21.5 equivalents of Ph3P/DEAD. Bu3P/ADDP (entries 5-7) was better at directing the cyclization-

Stevens rearrangement reaction providing 5 in up to 77% yield.

Table. Tandem Cyclization-Stevens Rearrangement of
Compound 1.

OztBu
cogBu  RaP, (DEAD or ADDP), /[C

r THF -78°C-RT, 24 h  /~N"“COzBu °% 2
WO~ COatBy Ct
1 5
entry R3P (equiv.) DEAD/ADDP  (5) yield%?

1 Ph3P (1.0) DEAD (1.0) 40b

2 Ph3P (1.0) DEAD (1.0) 50

3 Ph3P (1.1) DEAD (1.1) 57

4 Ph3P (1.5) DEAD (1.5) 57

5 BusP (1.0) ADDP (1.0) 60

6 BusP (1.5) ADDP (1.5) 72

7 Bu3P (2.2) ADDP (2.2) 77

asolated yield. PBenzene was used as solvent

The scope of this reaction is still under investigation. Substrates 10a-c (n = 1, 2 and 4) have been
examined using Ph3P/DEAD and Bu3P/ADDP. In brief, 11a-c were produced when Ph3P/DEAD was used
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while Bu3P/ADDP effected no reaction at all. The exception to this was that 1214 was obtained (from 10¢) in
modest yield (27%) using Bu3P/ADDP. Evidently, the proximity of the hydroxyl group to the nitrogen in the
starting material determines if the tandem cyclization Stevens rearrangement will occur. Thus, entry into the
cascade appears to be correlated to the cyclization rate with 6-membered ring formation being the lower
limit.15.16 In the absence of this step, the reactive alkoxy-triphenylphosphonium salt is attacked by
EtCO2NHN(-)CO2Et to give 11a-c. The alkoxy-tributylphosphonium salt produced by Bu3P/ADDP is less
reactive, which fortunately precludes reaction with the analogous monoanion of H!ADDP, but the cyclization
reaction is inhibited for 10a and 10b (n =1 and 2 respectively). The conclusion, to date, is that Bu3P/ADDP is
better suited than Ph3P/DEAD for this reaction sequence and is capable of forming both 5-membered and 6-
membered rings without by-products.

COtBu O
C OBu '

N
¢ N~ yN_comu
Ko PO 0l E0,C7 N H\Coztﬁu

C Okt CO2Bu
10a-c 11a-c 12
(n=1,2and4) (n=1,2and 9)

In conclusion, we have presented a novel reaction mediated by Ph3P/DEAD and Bu3zP/ADDP. In
contrast to the Mitsunobu reaction, in which the hydrogen of a Brgnsted acid is replaced with an alkyl group,
the above reaction involves the exchange of alkyl groups on a tertiary nitrogen. The above Stevens
rearrangement is interesting in that ammonium salt formation and rearrangement are carried out in one pot.
More importantly, this rearrangement is accomplished under essentially neutral conditions, in contrast to the
literature version which is carried out under basic conditions. 17
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